AN INVESTIGATION OF DAYLIGHTING IN HOSPITAL DESIGN
A CASE OF NAIROBI

EDGER AYIER
B02/0814/2011
Declaration

This thesis is my original work and has not been presented for an award of a degree in any institution to the best of my knowledge. This thesis proposal is submitted in partial fulfillment of the examination requirements for the award of the Bachelor of Architecture degree in the Department of Architecture and Building Science at the University of Nairobi.

Author: Ayier Edger Ochieng

Supervisor: Arch. Pammi Thatthi

Year Master: Arch. Erastus Abonyo

Chairman: Arch. Musau Kimeu
ACKNOWLEDGEMENTS

I wish to take this opportunity to thank the people who most helped and supported me in the year that I wrote this thesis.

To the Department of Architecture for their dedication, encouragement and guidance, my tutor Pammi Thatthi, I am grateful for your support, the year master Erastus Abonyo for his intelligence, precision and extraordinary ability to be quietly right, always, without being intrusive.

To my friends, bay members; Balozi, Joan and others for breathing life into a rather dull studio.

Lastly—and always—I thank my remarkable parents John Ochieng Ayier and Hellen Anyango Ayier for showing me much love and inspiring me to seek higher things.
to FAMILY
TABLE OF CONTENTS

CHAPTER 1.0 **INTRODUCTION**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Preamble</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Research Questions</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Research Objectives</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>Justification of Study</td>
<td>5</td>
</tr>
<tr>
<td>1.6</td>
<td>Significance of Study</td>
<td>5</td>
</tr>
<tr>
<td>1.7</td>
<td>Scope and Limitations</td>
<td>5</td>
</tr>
<tr>
<td>1.8</td>
<td>Organization of Study</td>
<td>6</td>
</tr>
<tr>
<td>1.9</td>
<td>Definition of Terms</td>
<td>7</td>
</tr>
</tbody>
</table>

CHAPTER 2.0 **LITERATURE REVIEW**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Daylight and Health</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Daylight and sustainable architecture</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Daylighting techniques</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Daylighting Principles</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>A Brief History of Hospital Design</td>
<td>21</td>
</tr>
<tr>
<td>2.7</td>
<td>Hospital Planning and Design</td>
<td>24</td>
</tr>
<tr>
<td>2.8</td>
<td>Best Practices: Daylight of Buildings Around The World</td>
<td>26</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Case Study 1: Butaro District Hospital</td>
<td>26</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Case Study 2: Palomar Medical Centre</td>
<td>32</td>
</tr>
<tr>
<td>2.9</td>
<td>Design Guidelines For Daylighting In Hospitals</td>
<td>42</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

CHAPTER 3.0 RESEARCH METHODOLOGY

3.1 Introduction ... 48
3.2 Research Design ... 49
3.3 Research Strategy .. 49
3.4 Sampling Design ... 50
3.5 Data Collection Methods 50
3.6 Data Analysis and Presentation 51
3.7 Research Tools ... 51
3.8 Time Horizon ... 52

CHAPTER 4.0 DATA PRESENTATION AND ANALYSIS

4.0 Introduction ... 54
4.1 Local Case 1: The Kenyatta National Hospital
 4.1.1 Background Study 55
 4.1.2 The Design of Kenyatta National Hospital 56
 4.1.3 Orientation .. 59
 4.1.4 Building footprint 61
 4.1.5 Courtyards ... 63
 4.1.6 Sun Control ... 67
4.2 Local Case 2: The Mama Lucy Kibaki Hospital
 4.2.1 Introduction ... 71
 4.2.2 Building Organisation 72
 4.2.3 Orientation .. 73
 4.2.4 Building footprint 74
 4.2.5 Courtyards ... 75
 4.2.6 Sun Control ... 76
<table>
<thead>
<tr>
<th>CHAPTER 4.0</th>
<th>DATAPRESENTATION AND ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Local Case 3: The Mater Hospital — — — — — — — — — — — — — — — — — — — 78</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Background Information — — — — — — — — — — — — — — — — — — — 78</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Building Organisation — — — — — — — — — — — — — — — — — — — 79</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Orientation — — — — — — — — — — — — — — — — — — — 80</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Building Footprint — — — — — — — — — — — — — — — — — — — 81</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Courtyards — — — — — — — — — — — — — — — — — — — 82</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Sun Control — — — — — — — — — — — — — — — — — — — 84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 5.0</th>
<th>RECOMMENDATIONS AND CONCLUSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction — — — — — — — — — — — — — — — — — — — 87</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary of Findings — — — — — — — — — — — — — — — — — — — 87</td>
</tr>
<tr>
<td>5.3</td>
<td>Limitations of findings — — — — — — — — — — — — — — — — — — — 89</td>
</tr>
<tr>
<td>5.4</td>
<td>Recommendations — — — — — — — — — — — — — — — — — — — 90</td>
</tr>
<tr>
<td>5.5</td>
<td>Further Areas of Study — — — — — — — — — — — — — — — — — — — 91</td>
</tr>
</tbody>
</table>

A REFERENCES

List of References
Chapter 01

Figure 1.01: Treatment wards featuring coordinated sky and landscape views
Fig 1.02: A ward at Mama Lucy Kibaki Hospital.
Fig 1.03: Toplighting in a ward
Fig 1.04: Daylit staff work station of The Alfred Hospital Intensive Care Unit
Fig 1.05: The mater Hospital
Fig 1.06: Kenyatta National Hospital
Fig 1.07: Mama Lucy Kibaki Hospital
Fig 1.08: Palomar medical Center
Fig 1.09: Butaro Hospital

Chapter 2

Fig 2.01: Direct, Diffuse and Reflected radiation
Fig 2.02: Three Dimensions of Sustainability
Fig 2.03: Major Daylighting techniques illustrated
Fig 2.04: Core lighting technique
Fig 2.05: Side window illustration
Fig 2.06: combination of a vertical clerestory and a side window.
Fig 2.07: Daylighting through a light shelf system
Fig 2.08: Light-directing louver system.
Fig 2.09: Anidolic side lighting system.
Fig 2.10: Prismatic panel inserted within a side window redirecting incoming sunlight.
Fig 2.11: top lighting systems
Fig 2.12: A light pipe system with its various sunlight collection and light transport systems.

Fig 2.13: Light well core lighting scheme
Fig 2.14: Light court core lighting scheme
Fig 2.15: World map indicating tropics and subtropics
Fig 2.16: Orientation according to the sun
Fig 2.17: Thick building footprint
Fig 2.18: Perforated building footprint
Fig 2.19: Vertical sun shading blinds
Fig 2.20: Horizontal sun shading blinds
Fig 2.21: Florence Nightingale colored lithograph
Fig 2.22: St Thomas's Hospital 1860, aerial view
Fig 2.23: St. Thomas’ courtyard in 1840
Fig 2.24: Transformation of patient care from the home to "Podium on a Platform" typology.
Fig 2.25: Classification of hospital types based on built forms
Fig 2.26: Hospital major zones and their relationship
Fig 2.27: Expanded relationship diagram for a healthcare facility
Fig 2.28 Distribution of Zones in a horizontal typology.
Fig 2.29: Distribution of Zones in a horizontal typology
Fig 2.30: Location of Butaro hospital
Fig 2.31: Arial view of Butaro hospital
Fig 2.32: The hospital at dusk
Fig 2.33: Site plan
Fig 2.34: Courtyard
Fig 2.35: Upper floor plan
Chapter 2

Fig 2.36: Exterior circulation corridors
Fig 2.37: The courtyard as a view provider
Fig 2.38: A section through the hospital
Figure 2.39: An image of the louvres
Fig 2.40: An interior of the women’s ward
Fig 2.41: An interior of the men’s ward
Fig 2.42: Combined daylightingside window and skylight
Fig 2.43: Skylight roof detail
Fig 2.44: Palomar Medical Center location
Fig 2.45: Ariel view of the hospital and surrounding
Fig 2.46: Palomar Medical Centre
Fig 2.47: Site plan
Fig 2.48: Detailed site plan
Fig 2.49: The pedestrian footpath
Fig 2.50: Conceptual sketch of the facility
Fig 2.51: Central core
Fig 2.52: Ground floor plan
Fig 2.53: Emergency department lobby
Fig 2.54: Radiology/Cath lab
Fig 2.55: First floor plan
Fig 2.56: Second floor plan
Fig 2.57: The terrace and green roof

Fig 2.58: Plan of patient room
Fig 2.59: Floor plan
Fig 2.60: Patient ward
Fig 2.61: 3D impression of the patient room
Fig 2.62: Orientation vis-à-vis the sun path
Fig 2.63: courtyard in emergency department
Fig 2.64: Corridor in surgery department
Fig 2.65: Discharge Lobby
Fig 2.66: Garden terrace café
Fig 2.67: Garden terrace
Fig 2.68: Terrace sun shading
Fig 2.69: Sun shading elements
Fig 2.70: Building orientation illustrated
Fig 2.71: Palomar patient tower orientation
Fig 2.72: Palomar patient tower
Fig 2.73: Site plan of Butaro Hospital
Fig 2.74: Narrow plan patient
Fig 2.75: courtyard in emergency department
Fig 2.76: Green courtyards
Fig 2.77: Horizontal sun shading types
Fig 2.78: Vertical sun shading
Fig 2.79 : Courtyard design concepts
Fig 2.80: Skylights in Butaro Hospital
Fig 2.81: Summary and conclusions

Chapter 04

Fig 4.01: Kenyatta National Hospital
Fig 4.02: Mama Lucy Kibaki Hospital
Fig 4.03: Location of KNH
Fig 4.04: Aerial view of KNH
Fig 4.05: Tower on Podium
Fig 4.06: Monument of the nursing tower
Fig 4.07: The Kenyatta National Hospital
Fig 4.08: Master plan of Kenyatta National Hospital
Fig 4.09: Zoning Map of Kenyatta National Hospital
Fig 4.10: Sun path of the old hospital
Fig 4.11: KNH Accident and Emergency Dept.
Fig 4.12: Sun Path Diagram of the Main Hospital
Fig 4.13: Narrow building footprint of the old hospital
Fig 4.14: Courtyards used as a perforation to enhance natural lighting
Fig 4.15: Perforated building footprint of this hospital
Fig 4.16: Old Hospital plan
Fig 4.17: Inpatient wards
Fig 4.18: Nursing tower Plan
Fig 4.19: Courtyard view
Fig 4.20: Inpatient wards layout
Fig 4.21: Courtyards in Outpatients
Fig 4.22: Pediatric Courtyard
Fig 4.23: Outpatient courtyard
LIST OF FIGURES

Chapter 04

<table>
<thead>
<tr>
<th>Fig 4.24: Section Analysis of the tower block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 4.25: Tower courtyard</td>
</tr>
<tr>
<td>Fig 4.26: Tower courtyard</td>
</tr>
<tr>
<td>Fig 4.27: Outpatient sun shading</td>
</tr>
<tr>
<td>Fig 4.28: Doctor’s plaza</td>
</tr>
<tr>
<td>Fig 4.29: Outpatient front</td>
</tr>
<tr>
<td>Fig 4.30: Main Hospital sun shading analysis</td>
</tr>
<tr>
<td>Fig 4.31: Courtyard sun shading</td>
</tr>
<tr>
<td>Fig 4.32: Sun shading devices on tower</td>
</tr>
<tr>
<td>Fig 4.33: Sun shading of the tower</td>
</tr>
<tr>
<td>Fig 4.34: Clerestories</td>
</tr>
<tr>
<td>Fig 4.35: Clerestories sketch</td>
</tr>
<tr>
<td>Fig 4.36: Skylights sketch</td>
</tr>
<tr>
<td>Fig 4.37: Map showing location of Mama Lucy Hospital</td>
</tr>
<tr>
<td>Fig 4.38: Mama Lucy Hospital bird eye’s view</td>
</tr>
<tr>
<td>Fig 4.39: Spine Road main entrance</td>
</tr>
<tr>
<td>Fig 4.40: Site Plan</td>
</tr>
<tr>
<td>Fig 4.41: Outpatient clinics</td>
</tr>
<tr>
<td>Fig 4.42: Hospital entrance</td>
</tr>
<tr>
<td>Fig 4.43: Sun Path diagram</td>
</tr>
<tr>
<td>Fig 4.44: Building elevation</td>
</tr>
<tr>
<td>Fig 4.45: Narrow building footprint</td>
</tr>
</tbody>
</table>

Chapter 05

<table>
<thead>
<tr>
<th>Fig 4.46: Mama Lucy ward interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 4.47: Integrated courtyards</td>
</tr>
<tr>
<td>Fig 4.48: Main courtyard</td>
</tr>
<tr>
<td>Fig 4.49: Light well</td>
</tr>
<tr>
<td>Fig 4.50: Courtyard</td>
</tr>
<tr>
<td>Fig 4.51: Building elevation</td>
</tr>
<tr>
<td>Fig 4.52: Plan showing position of sun shading</td>
</tr>
<tr>
<td>Fig 4.53: Section illustrate sun shading strategies</td>
</tr>
<tr>
<td>Fig 4.54: Second floor plan</td>
</tr>
<tr>
<td>Fig 4.55: Hospital waiting room</td>
</tr>
<tr>
<td>Fig 4.56: Front elevation</td>
</tr>
<tr>
<td>Fig 4.57: Location map</td>
</tr>
<tr>
<td>Fig 4.58: Aerial view</td>
</tr>
<tr>
<td>Fig 4.59: Site plan</td>
</tr>
<tr>
<td>Fig 4.60: Orientation</td>
</tr>
<tr>
<td>Fig 4.61: Building footprint</td>
</tr>
<tr>
<td>Fig 4.62: The Mater Hospital Courtyards</td>
</tr>
<tr>
<td>Fig 4.63: Admin sun shading techniques</td>
</tr>
<tr>
<td>Fig 4.64: Outpatient façade sun shading</td>
</tr>
<tr>
<td>Fig 4.65: Inpatient façade sun shading</td>
</tr>
<tr>
<td>Fig 4.66: Sun control</td>
</tr>
<tr>
<td>Fig 4.67: Sun control illustrated</td>
</tr>
</tbody>
</table>

Chapter 05

<table>
<thead>
<tr>
<th>Fig 5.01: Doctor’s plaza at KNH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 5.02: Mama Lucy Hospital courtyard</td>
</tr>
<tr>
<td>Fig 5.03: Kenyatta National Hospital Courtyard</td>
</tr>
<tr>
<td>Fig 5.04: Use of trees to sun shade</td>
</tr>
</tbody>
</table>
Properly daylight spaces can give character to a building or it spaces. Daylight can also create unwanted lighting conditions of discomfort and glare for building users which affects building occupant’s performance and health. Current and future hospital designs need to provide healthier healing environments by improving access to daylight and a connection to nature through provision of view. Most Kenyan hospitals have been designed with a focus on providing service efficient healing environments at the expense of physiological and psychological comfort of patients, staff and visitors.

This study explored daylighting strategies and how their application in hospital design to create a healing environment. The analysis of two case studies put forth five design parameters that guide the design of a naturally lit hospital which are: orientation, building footprint, sun control, courtyards, skylights and clerestories. These parameters were used to evaluate the design of the local case studies. The author then developed design recommendations that would improve daylighting of hospitals in Nairobi.

Case study approach was used to carry out fieldwork due to its flexibility and expansiveness as a research method. Kenyatta National Hospital, Mater Hospital and Mama Lucy Hospital were chosen as case studies for this thesis. Fieldwork findings affirm the statement that the design of modern hospitals prioritizes efficiency of services over patient comfort and healing. The study recommends the sensitization of stakeholders in the built environment on the importance of daylighting and sustainable design in creating healing environment; formulation of legislation on the specifics of daylight required for building types and the upgrading of the three hospitals studied to ensure visual comfort where possible.
CHAPTER ONE
INTRODUCTION
1.1 PREAMBLE

“No space, architecturally, is a space unless it has natural light.” Louis Kahn (Loud & Kahn, 1989, P262).

Daylighting is an architectural strategy used in designing high performance buildings which have a positive impact on its users and the environment as a whole. The use of natural light has traditionally been a desirable feature and evidence of good design in hospitals which have a critical demand for natural light which creates a healing environment for patient recovery. Hospitals properly designed for daylight have created quality indoor environments of visual comfort.

According to Malkin (2008), having access to daylight can influence well-being by promoting healing, relieving patient pain and stress. It also reduces medical errors by hospital staff and is effective as an anti-depressant. Daylight plays a major role in resource conservation, occupant’s level of productivity, health and comfort. Furthermore day lit hospitals have a great capacity for energy savings since their design integrates relevant sustainable strategies in response to local climatic conditions. A hospital is a high performance building that should attract, retain and enhances patient healing process and enhances patient healing and workers well-being.

The sun is the major source of daylight. It radiates electromagnetic waves with a balanced spectrum ranging from ultra-violet (100nm) to infrared radiation(10nm) with a small part of this light visible to the human eye. Daylight is a combination of skylight and sunlight and constantly changes in character throughout the day and over different seasons of the year. This gradual change in color, intensity and direction helps control human behavior in a way that artificial lighting cannot because of its static qualities of color and intensity.

With the advent of global warming present and future architects are challenged to design hospitals that minimize greenhouse gas emissions, energy emissions and energy consumption. One sustainable strategy used to minimize these factors is daylighting of the interior spaces which can be most effective in tropical countries like Kenya thereby enhancing healing whilst reducing global warming.

This study investigates daylighting strategies/techniques in hospital design and how they can be applied to create a healing environment.
1.2: PROBLEM STATEMENT

Daylight and view. These are fundamental variables in the design of hospitals and may at times prove the difference between life and death. The existence of sufficient natural light in indoor spaces is preferred and more important to excessive or insufficient natural light. Sufficient daylighting achieved through architectural design reduces energy consumption and enhances the environmental quality of hospital spaces.

Hospital staff, patients and visitors are impacted negatively when natural light is either excessive or lacking. Most hospitals in Kenya are designed without proper consideration of daylighting principles since they are service oriented. This has resulted in hospitals that are:

- Energy efficient with high operation costs
- Contribute more to global warming through greenhouse gas emissions
- Visually uncomfortable and do not contribute positively to healing as they should

This study intends to establish daylighting strategies in hospital design and investigate the daylighting conditions of local hospitals in Nairobi and how it can be improved on.
1.3: RESEARCH QUESTIONS

The main guiding questions that this research seeks to answer are:

1. What are the daylighting principles and strategies in hospital design?
2. What is the daylight performance of hospitals in Nairobi?
3. How can the daylighting performance of hospitals in Nairobi be enhanced?

1.4: RESEARCH OBJECTIVES

This research thesis aims to:

1. Establish daylighting principles and strategies in hospital design
2. Determine the daylighting performance of hospitals in Nairobi
3. Develop design recommendations that would enhance daylighting of hospitals in Nairobi.
1.5: JUSTIFICATION

The positive effects of daylighting on human health, behavior and performance provides a justification as to why daylight in hospital design should be studied and used as one of the physical aspects in healing environment creation. Studies on daylighting has always focused on schools, offices and commercial buildings despite it having a more profound effect on hospitals more than any other building especially for those who are bedridden. The findings of this study will provide an architectural insight into the design of hospitals that connect patients and staff to environmental conditions of daylight and view.

1.6: SIGNIFICANCE OF STUDY

There is need to pay particular attention to daylight performance of hospitals. The findings of this study will contribute to the benefit of the society considering that hospitals play a key role in a patient’s recovery and the health of hospital professionals. This thesis will propose strategies for designing hospitals in Nairobi that would enhance visual comfort. It will also highlight the importance of daylight in order to draw the attention of architects and policy makers to sustainable design initiatives. For the researcher, this study will be a learning experience into critical areas of hospital design.

1.7: SCOPE AND LIMITATIONS

An immense amount of literature has been written on healthcare buildings over the past century with extensive research carried out on daylight. This study will limit itself to the most contemporary of this research literature and the most relevant knowledge to the study.

Nairobi city has a variety of hospitals that would benefit from the findings of this thesis. In this study, the researcher investigates in depth three main hospitals designed and built during different eras of Nairobi’s history with focus on daylighting due to time constraints.

This does investigate the thermal comfort performance of the hospitals or how the daylighting techniques enhances or inhibits thermal comfort.
AN INVESTIGATION OF DAYLIGHTING IN HOSPITAL DESIGN

1.8: ORGANIZATION OF STUDY

Chapter one introduces the topic of study and gives an overview of the study questions and objectives. Chapter one also provides a preview into daylight: its effects on hospital patients and their environs.

Chapter two analyses existing literature on daylighting, thermal comfort and ward design. Acceptable levels of daylight, thermal comfort are also reviewed. Relevant international case studies of hospital wards are also discussed in this chapter. All information and data collected and analyzed in this chapter form the basis for the study thereby acting as a reference for the researcher during field work.

Chapter three establishes and examines the various methods and equipment of field research for this study. It identifies the case study method as the main research method naming Kenyatta National Hospital, Mama Lucy Kibaki Hospital and Mater Hospital as the local case studies.

Chapter four outlines an in-depth analysis of the case studies. The analyses focuses on existing daylight and thermal comfort in the hospital wards. This chapter also highlights the various factors that affect daylight and thermal comfort in these wards and provides a comparative analysis between the ideal daylight and thermal comfort levels and the existing daylight and thermal comfort levels in these two hospitals.

Chapter five provides a brief summary of the findings derived from chapter four deducing conclusions based on the research findings. The chapter then suggests directions for future design of better day lit hospital in Nairobi.

Fig 1.08: Organization of Study
Source: Author modified on August 11th, 2016
1.9: Definition of Terms

1) Hospital - An institution providing medical and surgical treatment and nursing care for sick or injured people

2) Daylight – The practice of bringing natural light into a building and distributing it in a way that provides more desirable and better quality illumination than artificial sources

3) Glare - Strong and dazzling light

4) Radiation – the emission of energy as electromagnetic waves or as moving subatomic particles, especially high-energy particles that cause ionization

5) View – ability to see something

6) Sustainability - conserving an ecological balance by avoiding depletion of natural resources

7) Energy – Power provided from the utilization of resources, especially to provide light and heat

8) Typology – A classification according to general types

9) Circadian rhythm - any biological process that displays an endogenous, entrainable oscillation of about 24 hours. These 24-hour rhythms are driven by a circadian clock, and they have been widely observed in plants, animals, fungi, and cyanobacteria.