University of Nairobi,

School of the Built Environment,

Department of Architecture and Building Science.

21st CENTURY BRUTALISM: THE AESTHETIC RENAISSANCE OF CONCRETE.

Muthoni Edward Ngugi

B02/0906/2013

Tutor:

Professor J. Magutu

DECLARATION

This thesis is my original work and has not been presented in any other University or Institution for the purpose of awarding a degree

to the best o	f my knowledge.	
Author	Muthoni Edward Ngugi B02/0906/2013	Date
	s submitted in partial fulfilment of the examination requirements for ent of Architecture and Building Science at the University of Nairob	
Tutor	Professor Jerry Magutu	Date
Year Master	Arch. Norbert Musyoki	Date
Chairman	Arch. Musau Kimeu	Date

DEDICATION

Mum

For all you did to send me to school.

I reminisce the moments, the story books, the love.

ACKNOWLEDGEMENTS

I wish to express profuse gratitude to my Tutor, Professor Jerry Magutu, for guiding me earnestly, and strengthening my conviction with his invaluable insights, advices and sheer wisdom. I extend the appreciation to the Sixth-Year studio staff, whose collective impact has steered me safely into harbour.

I have benefited from the concern, good wishes thoughts and prayers from a great deal of good people keen to help, and though I may not enumerate them here, I am forever grateful.

My family, who have been with me and in my heart throughout the journey.

I am forever indebted to the dedication and kindness of Mr Cosmas Ndung'u and his family, for his unwavering support, love and presence since the beginning. He has been the steady North star in the firmament. In all space and time, there's no one kinder. May your descendants never lack. Amen.

Without God, this train would not have left the station.

TABLE OF CONTENTS

1	CH	IAPTER 1: INTRODUCTION	1
	1.1	Introductory Background	2
	1.2	Problem Statement	
	1.3	Research Objectives	
	1.4	Research Questions	
	1.5	Justification of The Study	
	1.6	Significance of The Study	
	1.7	Scope and Limitation	
	1.8	Organisation of Study	
2	CL	IAPTER 2: LITERATURE REVIEW	Ω
_	Ci	IAFTER 2. LITERATURE REVIEW	0
	2.1	Development of Concrete as a Building Material	
	2.2	The Rise and Fall of Brutalism	
	2.2	1 criticsm and negativity towards brutalism	12
	2.3	21st Century Concrete Construction	15

	2.3.1	ultra-high-performance concrete (uhpc)	15
	2.3.2	glass fibre reinforced concrete (gfrc)	17
	2.3.3	textile reinforced concrete	18
	2.3.4	graphic concrete	20
	2.3.5	light transmitting concrete	22
	2.3.6	self-cleaning concrete	23
	2.3.7	self compacting concrete	25
	2.3.8	self-healing concrete (shc)	27
3	CHAI	PTER 3: RESEARCH METHODOLOGY	29
	3.1 R	esearch Purpose	30
	3.2 R	esearch Strategy	30
	3.3 Da	ata Collection Methods	31
	3.4 Da	ata Analysis and Presentation	31
4	CHAI	PTER 4: CASE STUDIES	32
		ase Study Selection	
	4.2 Ca	ase Study 1: The Museum of European and Mediterranean Civilizations	34
	4.2.1	facade design	35
	4.2.2	type of concrete used	36

4.2.3	façade anchorage	37
4.2.4	construction process	38
4.3 Ca	ase Study 2: The Broad Contemporary Art Museum	39
4.3.1	facade design	40
4.3.2	type of concrete used	40
4.3.3	façade anchoragefaçade anchorage	41
4.3.4	construction process	42
4.4 C	ase Study 3: Heydar Aliyev Center	43
4.4.1	façade design	43
4.4.2	type of concrete used	44
4.4.3	façade anchoragefaçade anchorage	45
4.4.4	construction process	46
4.5 Ca	ase Study 4: Swahili Gem Apartments	47
4.5.1	façade design	48
4.5.2	type concrete used	50
4.5.3	façade anchorage	51
4.5.4	construction process	52
4.6 Co	omparative analysis of façade design and type of concrete used	54
5 CHAF	PTER 5: SUMMARY OF FINDINGS, CONCLUSIONS AND RECOMMENDATIONS	56
5.1 Si	ummarv of Findings From Literature Review	57
0.1 00	uiiiiiuiy oi i iiiuiiigo i toiii ⊑itolutuio Itoviow	

5.1.1	ultra-high-performance concrete (uhpc)	57
5.1.2	glass fibre reinforced concrete (gfrc)	57
5.1.3	textile reinforced concrete	58
5.1.4	graphic concrete	58
5.1.5	light transmitting concrete	59
5.1.6	self-cleaning concrete	59
5.1.7	self compacting concrete	60
5.1.8	self-healing concrete (shc)	60
5.2 Su	mmary of Findings From Case Studies	61
5.2.1	case study 1 (the museum of european and mediterranean civilizations)	61
5.2.2	case study 2 (the broad contemporary art museum)	62
5.2.3	case study 3: (heydar aliyev centre baku, azerbaijan)	62
5.2.4	case study 4 (swahili gem apartments)	63
5.3 Co	nclusions	64
5.4 Re	commendations	65
5.4.1	recommendations for further research	66
LIST OF	FIGURES	
	Drange County Offices showing massive, blocky brutalist architecture. Source: bbc.com	
Figure 2.1: N	Nabatean city ruins in Mamshit National Park in Israel. Source: shutterstock.com	9
•	nterior of the Pantheon dome, seen from beneath. The concrete for the coffered dome was laid on moulds, mounted on temporary	
scanolding.	Source: smithsonianmag.com	9

Figure 2.3: Portland cement revolutionised concrete in the 19th Century. Source: pinterest.com	10
Figure 2.4: the first reinforced concrete building, the Francis Coignet house. Source: Researchgate.net	10
Figure 2.5: the Unité d'Habitation in Marseille by Corbusier is among the earliest brutalist works. Source: pinterest.com	11
Figure 2.6: The Tricorn Centre, destroyed in 2004. Source: Pinterest.com.	12
Figure 2.7: demolition of Robin Hood Gardens. Source: pinterest.com	12
Figure 2.8: A poor maintenance of government housing block coupled with the way exposed concrete ages also contributed to the growth of	
distaste for concretedistaste for concrete	13
Figure 2.9: The Ryugyong Hotel in Pyongyang, North Korea. Source: pinterest.com	14
Figure 2.10: Odense university technical faculty building has a high-performance concrete outer shell. Source: Archello.com	
Figure 2.11: the screen reduces direct sunlight by up to 50 percent, while still allowing unobstructed views. Source: Archello.com	
Figure 2.12: the dense particle parking in UHPC. Source: www.mdpi.com	16
Figure 2.13: ultra-thin (13mm) UHPC panels. Source: Indiamart.com	16
Figure 2.14; Complex geometries on facades are achievable using GFRC. Source: theplan.it	17
Figure 2.15: GFRC facade of the Broad Museum in Los Angeles, California, USA. Source: pre-cast.org	
Figure 2.16: Nanjing Youth Olympics Centre has a GFRC facade. Source: Arch20.com	18
Figure 2.17: Textile reinforced concrete. Source: en.wikipedia.org	18
Figure 2.18: A 3D sitgrid structure which contains two layers of textile woven together with space between them. Source: arthitectural.com	19
Figure 2.19: larger TRC panels measuring 14.34 m2 each were used for partial cladding of the St. Leonhard secondary school in Aachen,	
Germany. Source: sciencedirect.com	19
Figure 2.20: Eberswalde Library building in Eberswalde, Germany, by Herzog & de Meuron. Source: Archiexpo.it	20
Figure 2.21: close-up of the photoconcrete facade above. Source: flickr.com	20
Figure 2.22: Fachhochschule Eberswalde Library building in Eberswalde, Germany by Herzog and de Meuron. Source: Flickr.com	20
Figure 2.23:the photoconcrete facade at the University Paul Sabatier in Toulouse, France. Source: Archiexpo.it	20
Figure 2.24: close- up of the photoconcrete façade at the University Paul Sabatier in Toulouse, France. Source: reckli.com	21
Figure 2.25: face of Johannes Guttenberg engraved on an apartment facade in Heidelberg, Germany. Source: Pinterest.com	21
Figure 2.26: Light transmitting concrete at the Cella Septichora Visitor Centre in Pecs, Hungary.Source: Slideshare.net	22
Figure 2.27: The optical fibres that transmit light through the blocks. Source: slideplayer.com	22
Figure 2.28 :The Italian Pavilion at the Shanghai Expo in 2010. Source: Heidelbergcement.com	23
Figure 2.29: Action of Titanium dioxide	23
source: www. concretedecor.net	23
Figure 2.30: The Jubilee Church in Rome. Source: arcvision.org	24
Figure 2.31: The Matrice Church in Cittanova, Italy has a self-cleaning concrete facade. Source: chiesacattolica.cm	24
Figure 2.32: Pouring of self-compacting concrete, Source: Youtube.com	25

Figure 2.33: complex steel reinforcement forbids mechanical vibration. Source: forconstructionpros.com	25
Figure 2.34: slanting walls at the Eli and Edythe Broad Art Museum in Michigan by Zaha Hadid Architects. Source: pinterest.com	26
Figure 2.35: The Phaeno Science Centre in Wolfsburg was built using SCC. Source: arthitectural.com	26
Figure 2.36: Autogenous healing in a crack. Source: Kaloti and Chanakya	27
Figure 2.37: Bacterial precipitation. Source: Users/User/Downloads/CIVIL_KalotiD.pdf	27
Figure 2.38:Self-healing concrete solves cracking problems in this Dutch lifeguard station. Source: architectureanddesign.com	
Figure 4.1: Night view of the Museum.	34
Source pinterest.co.uk	34
Figure 4.2: the museum is connected to the fort adjacent to it via a UHPC bridge. Source: architecturalreview.com	35
Figure 4.3: The latticework seen from the corridor adjacent to it. Source: cntraveler.com	35
Figure 4.4: The filigree facade viewed from the Fort at night. Source: me.france.fr	35
Figure 4.5: the facade is reminiscent of mashrabiya. Source: architecturalreview.com	36
Figure 4.6: the pattern looks like mud cracks in the summer. source: pinterest.com	36
Figure 4.7: The facade is supported by booms attached to the vertical columns. Source: architecturalreview.com	37
Figure 4.8: the filigree lacework also serves as a roof for the rooftop restaurant. Source. archello.com	
Figure 4.9: external perspective of the museum. Source: Archdaily.com	39
Figure 4.10: the museum components, the outer veil (shell) and the vault inside. Source: theplan.it	39
Figure 4.11: the outer porous veil and the solid inner core. Source: theplan.it	40
Figure 4.12: perspective of the GFRC exterior 'veil'. Source: thesimplecouple.com	40
Figure 4.13: sprayed fibres used to mould the GFRC panels. Source: concretecountertopinstitute.com	41
Figure 4.14: the façade is anchored to the ground along General Thaddeus Way. Source: kcrw.com	
Figure 4.15: GRFC panel before installation. Source: Gensler.com	42
Figure 4.16: the 5 axis CNC machine used to cut the moulds. Source: northwoodmachine.com	
Figure 4.17: close up of the 'veil'. Source: gensler.com	42
Figure 4.18: Heydar Aliyev Centre	43
Source: www.deezen.com	43
Figure 4.19: GRFC overhang on the front facade	43
Source floornature.com	43
Figure 4.20: the architects managed to achieve a surface that is continuous from the ground up. Source: dezeen.com	44
Figure 4.21: the building has a characteristic white colour due to the use of whie cement. Source: wikiarquitectura.com	44
Figure 4.22: The building's steel spaceframe.	45
Source buildipedia.com	45
Figure 4.23: the GFRC panels are attached to a spaceframe made of tubular steel. Source: skyscrapercity.com	45

Figure 4.24: installation of GFRC panels onto the steel space frame. Source Adelto.co.uk	46
Figure 4.25: front view of the Swahili Gem Apartments.	47
source: archdaily.com	47
Figure 4.26: corner close-up of the concrete skin. Source: pinterest.com	48
Figure 4.27: Mashrabiya screen on a balcony in old town Mombasa. Source: Author, 2016	48
Figure 4.28: front elevation showing various surfaces. Source: Urko Sanchez Architects.	49
Figure 4.30: Sika Viscocrete superplasticizer used in construction. Source: deu.sika.com	50
Figure 4.31: Steel reinforcement. source: Urko Sanchez Architects.	
Figure 4.32: Sketch section showing anchorage to the ground and connection to floor slabs	51
Figure 4.33: photo showing the facade after formwork removal. Notice the steel reinforcement at the top. Source: Urko Sanchez Architects	
Figure 4.34: installation of internal formwork around the steel reinforcement before the pour. Source: Urko Sanchez Architects	53
LIST OF TABLES	
Table 4.1 : table showing comparative analysis of the case studies.	54

ABSTRACT

Both loved and loathed, concrete is forever at the diverging point of popular opinion. Having evolved for hundreds of years, the material has witnessed periods of rife usage and admiration alternating with years of disregard and disdain. While its strength in compression and durability is embraced by all, the appearance of concrete is the subject of unending disagreement. During the immediate post war years, the style Brutalism rose, espousing the use of unadorned concrete and the exposure of building functions. For a short while, the ism dominated world architecture only to wane not long after its inception by the likes of Le Corbusier. Why did brutalism fall out of favour with most people, and does the failure of brutalism signal the failure of concrete? The recent advancements in concrete research and technology—are a tell-tale sign that concrete is remerging as the façade material of choice, this time backed by innovations from different parts of the world and ingenious technological advancements. It is up to architects to push concrete to the limit, it always has more to offer.

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTORY BACKGROUND

Concrete is on one hand stigmatised and reviled and on the other hand celebrated and revered. It is the most widely used material in the construction industry, and the second most consumed product globally after water. The widespread use of concrete not only comes from its durability, resilience and strength in compression, but also from the availability of the raw materials required in its production. The strength and durability of concrete has led to its utilisation in vast areas of construction, from roadworks to marine works and all kinds of buildings. On the other hand, concrete is heckled for its supposed visual unease and repetitiveness in standardised products (Fehling et al., 2016).

Figure 1.1: Orange County Offices showing massive, blocky brutalist architecture. Source: bbc.com

The use of concrete as the primary façade material prevailed in the heyday of Brutalism in the years following World War II. Concrete was the favoured material for Brutalism due to its dynamism of form, its versatility of function and its appearance (Ramsey, 2015). Brutalist buildings dominantly featured unadorned concrete surfaces on their facades and were usually blocky and massive (Figure 1.1). After a spate of popularity, brutalism gradually fell out of favour with the people. Although concrete continues to be the most widely used material in construction

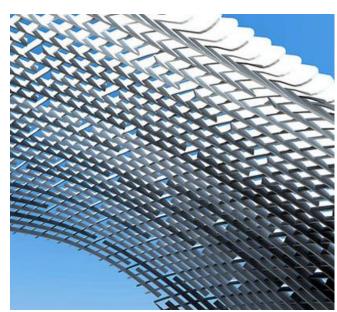


Figure 1.2: The Space pavilion in London. Source: architonic.com

today, the decline in the appreciation of exposed concrete as a façade material is apparent. For many, architectural concrete is summed up by the Brutalist architecture movement of the immediate post war years and, all too often, this modernist style epitomises all of its 'negative' undertones: cold, grey, graffiti ridden, stark, angular forms. As a result of exposed concrete falling out of favour with the people, it has been relegated to construction of structural components mainly.

Today, however, concrete is back in vogue, driven by new innovations and technological developments. New concrete types are producing a new generation of concrete buildings. The buildings elicit a sense of lightness, airiness and transparency, despite having concrete as the predominant façade material, such as the Space pavilion in London, constructed using fibre reinforced concrete (Figure 1.2). Concrete is resurfacing as the façade material of choice, and this time, it is supported by a wide array of innovations and technological developments.

1.2 PROBLEM STATEMENT

The utilisation of concrete in buildings has mainly been on structure, owing to its strength, durability and relatively low cost. Conversely, the architectural potential of concrete as an aesthetic façade material has received lesser attention, especially following the decline of Brutalism. In recent years, however, advancements in technology have enabled architects and engineers to fully exploit the aesthetic capabilities of concrete, thus heralding a resurgence of the Brutalism movement. This thesis explores the aesthetic potentials of concrete as used in the 21st century and puts forward recommendations that could be used in growing cities like Nairobi and elsewhere.

1.3 RESEARCH OBJECTIVES

- i. To highlight on innovative ways of using concrete on building facades.
- To investigate, by way of case studies, how concrete has been used on building facades in the 21st Century.
- iii. To put forward recommendations on the use of concrete on building facades.

1.4 RESEARCH QUESTIONS

- . What innovative ways for the use of concrete on building facades have emerged after the decline of brutalism?
- ii. How have innovative concrete types in the 21st century been used on building facades?
- iii. Moving forward, how can concrete be used in creating aesthetically appealing buildings?

1.5 JUSTIFICATION OF THE STUDY

The innovativeness in designing concrete facades over the years has waned, resulting in repetitive shape grammar, the ubiquitous grey colour and reliance on outdated construction technology. There is need to explore newer ways of architectural expression using concrete as the material comes back in vogue.

1.6 SIGNIFICANCE OF THE STUDY

The study contributes valuable insights on the aesthetic capabilities of concrete, which would significantly improve the appearance of buildings. The resurgence of concrete as a veritable façade material is happening at a time when Nairobi is experiencing a boom in large scale building projects and the revelations herein could help in designing better concrete facades.

1.7 SCOPE AND LIMITATION

The study is conducted in a short, four-month period, and while every effort has been made to include all new advancements in concrete, there is room to research every item in greater depth.

1.8 ORGANISATION OF STUDY

Chapter 1 contains the introduction to the study, problem statement, research questions and objectives, justification, scope, as well as limitations of the study.

Chapter 2 explores brutalism as a universal style and looks into the new innovations that are bringing concrete back into relevance.

Chapter 3 is a description of the methodology used in the study.

Chapter 4 contains the four case studies analysed to shed light on the use of concrete in 21st century buildings.

Chapter 5 has the summary of findings sourced from the literature review and the case studies, followed by conclusions and recommendations.